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Absorbing Boundary Conditions

Problem: Duration of simula-
tion limited by return of re-
flected waves from boundary.

Solution: Enlarge computational area, or reduce boundary re-
flections.



The Perfectly Matched Layer

Berenger (1994) considered the problem of attaining perfect
transmission of planar electromagnetic waves from dielectric me-
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T hese characterize the PML



Free space is equivalent to a PML layer with oy, 0}, 04,0

Substitution yields:
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Reflectionless transmission and attenuation occur when the Impedance
matching conditions are observed:
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The perfect transmission of plane waves occurs regardless of
angle of incidence or frequency.

By using both matching conditions, PMLs can be matched to
free space, or to other PML layers.



Split-field PML as an absorbing layer

Surround the computational region with finite depth PMLSs.
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Advantages:

e Actual reflection magnitudes roughly 103 times better than
typical second and third order analytical ABCs.

e System remains in time domain.

Disadvantages:

e Non-physical modification of Maxwell’'s Equations.

e EXxtra variables introduced by field splitting



Uniaxial Formulation

Allow material parameters to be diagonal tensors.

quency domain:
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Consider a PML interface in the yz plane.

Phase matching vields:
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And the reflection coefficient for the TE/TM modes are:
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T he following choice of A:
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allows the transmission of traveling waves into the half space

without reflection regardless of the frequency or angle of inci-
dence.

If a =1+ J% then the waves are attenuated with depth in the
layer.



Application of Perfectly Matched Layers to Simulations

Surround the computational region with PML layers of finite
depth.
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Application of Perfectly Matched Layers to Simulations

Choose o in each layer to be zero near the surface and increase
with depth in the layer. Powers of degree 3 ~ 4 work well.

PML equations are all in the form A = sB where s =1+ o/jw
where A and B are field components or intermediate variables.

Identify dependent variables in PML equations; convert back to
time domain.
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PML Implementations

e FDTD. Yee scheme with staggered time stepping.

e FEM and spectral methods. Time and frequency domain.

e Versions of the PML native to other orthogonal coordinate
systems.

e Higher order FD schemes.



PML Variations

e Different PML parameters. (e.g. s=1+4 ﬁ)
e Different constitutive laws. (e.g. D = [A|E + [M]H)
e PMLs which match dispersive, non-linear, anisotropic media.

e \Versions for acoustics, NLS.



Mimetic Difference Operators

Discrete operators which mimic properties of continuous opera-
tors.

e ODbey discrete forms of vector identities

e Eliminate spurious modes in solutions

e Enforce conservation laws

e Allow irregular (structured or unstructured) grids



Discrete Scalar Spaces

LLogically rectangular grids:
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HN: Nodal values
HC: Cell-centered values



Discrete Vector Spaces
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‘HS: Vectors normal to cell sides
‘HL: Vectors tangent to cell sides
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Natural Operators

o . 1 .
div: HS — HC V-W= lim — (W, n)dS
grad : HN — HL Vi—o|V]/Jov
curl : HL — HS 5 1 -
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The natural operators satisfy the following identities:
div A =0 iff A= curl B where A ¢ 'HS and B € ‘HL
curl A=0 iff A=grad U where A ¢ HL and U €¢ HN

Note that we can not form lap = div grad because the domains
do not match.



Adjoint Operators
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Discrete versions of these identities are used to define adjoint
operators.

These also satisfy the same vector identities as before.

div: HL— HN divgrad: HC — HC divgrad: HN — HN
grad . HC — 'HS curl curl : ' HS —'HS curl curl : HL — 'HL
curl : HS — HL grad div: HL — HL grad div: HS — HS



Maxwell's Equations
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With constitutive laws D = e¢E, B = uH, these become:
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We assign the discrete functions E ¢ ‘HL, B € 'HS and use the
operators curl, curl,



Mimetic Discretization of Maxwell's Equations with PML

Change variables with D = eEp, By, = pH. Maxwell's equations
become:
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These can be converted back into the time domain and dis-
cretized as before. PML equations are of the form A = sB
where s =1+ o/jw.

Time stepping is done with a leapfrog scheme: FE™ E} and
1/2 pn+1/2
Bnt1/2 pj .



Implementation issues

Note that the implementation avoids incorporating the PML ten-
sors into the curl operator.

PML parameters considered functions of the variables &,n inter-
polated between grid lines.

Since we're using the orthogonal form of the PML, the grid must
be at least approximately orthogonal.



Example Results

A current source is added to Maxwell’s equations and a pulse gen-
erated in the center of the domain [-0.024,0.024] x[—0.024,0.024].
The resulting B, is observed at (—0.012,0.012).
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Locally Non-orthogonal grids

To illustrate the effectiveness of the mimetic operators on non-
orthogonal grids.
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Polar Grid
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Scattered field reflection off conducting cylinder simulated through
boundary condition on inner edge. 12 cell PML placed on outer
edge. B, observed at point (—-0.116,0.009).
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Future Work

Re-express curl operators in terms of continuous field quantities.
This involves folding the PML tensors into the curl, operator.

Implement non-orthogonal PML through a local conversion to
an orthogonal basis.



